Pulmonary insulin delivery is steadily emerging as a promising solution for the treatment of diabetes mellitus. The large as well as thin absorptive area of the lungs has not been explored until now for the treatment of systemic disease like diabetes. With an understanding of the lung anatomy and physiology and the transport mechanism of insulin through lungs, diabetic treatment through the pulmonary route may well become the reality of the 21(st) century. Though the transport of insulin through the lungs itself appears quite encouraging, potential problems concerning the formulation of a peptide like insulin in the form of an aerosol seem to be the most challenging. Stability aspects, stringent control of Mass Median Aerodynamic Diameter, antigenicity, insulin losses due to the device and impaction, sedimentation and diffusion in the nonabsorptive areas of the airway system (especially in the oropharynx) emerge as major concerns. This is in addition to the problems of lack of reproducibility of dose delivery by an inhaler where individual variations due to inspiratory differences and method of use of device come into play. Lung diseases and smoking may alter lung mechanisms and dose alterations are to be studied in such cases. Though almost equally effective, if not more, than the subcutaneous insulin route, even with proved short-term efficacy, insulin delivery through lungs is a potential but not a wholly proven means for blood glucose control.
These diabetes complications are related to blood vessel diseases and are generally classified into small vessel disease, such as those involving the eyes, kidneys and nerves (microvascular disease), and large vessel disease involving the heart and blood vessels (macrovascular disease). Diabetes accelerates hardening of the arteries (atherosclerosis) of the larger blood vessels, leading to coronary heart disease (angina or heart attack), strokes, and pain in the lower extremities because of lack of blood supply (claudication).

Family or personal history. Your risk increases if you have prediabetes — a precursor to type 2 diabetes — or if a close family member, such as a parent or sibling, has type 2 diabetes. You're also at greater risk if you had gestational diabetes during a previous pregnancy, if you delivered a very large baby or if you had an unexplained stillbirth.
×