The bionic pancreas is another project from Boston University and Massachusetts General Hospital in a joint effort to create a bionic pancreas, a type of artificial pancreas which not only includes insulin but also glucagon to raise blood sugar. The system is intended to use an algorithm that checks every 5 minutes to calculate the amount of insulin or glucagon needed. The project has recently formed into a public benefit corporation called Beta Bionics. This newer structure allows it to serve not just shareholders, but also the public good. Beta Bionics also became the first American company to raise over a $1 million from small investors under new public investing rules!
Diabetes is a whole-body problem. The disease is marked by too high blood glucose, which affects the many cells fed by the circulatory system. The cells of the gastrointestinal (GI) tract and the nerves that control its movement are no exception. People with diabetes have an elevated risk for a spectrum of GI disorders that can make life uncomfortable. Identifying the cause of GI discomfort is the first step toward getting the right treatment and finding relief.
To explain what hemoglobin A1c is, think in simple terms. Sugar sticks, and when it's around for a long time, it's harder to get it off. In the body, sugar sticks too, particularly to proteins. The red blood cells that circulate in the body live for about three months before they die off. When sugar sticks to these hemoglobin proteins in these cells, it is known as glycosylated hemoglobin or hemoglobin A1c (HBA1c). Measurement of HBA1c gives us an idea of how much sugar is present in the bloodstream for the preceding three months. In most labs, the normal range is 4%-5.9 %. In poorly controlled diabetes, its 8.0% or above, and in well controlled patients it's less than 7.0% (optimal is <6.5%). The benefits of measuring A1c is that is gives a more reasonable and stable view of what's happening over the course of time (three months), and the value does not vary as much as finger stick blood sugar measurements. There is a direct correlation between A1c levels and average blood sugar levels as follows.
Nerve damage from diabetes is called diabetic neuropathy and is also caused by disease of small blood vessels. In essence, the blood flow to the nerves is limited, leaving the nerves without blood flow, and they get damaged or die as a result (a term known as ischemia). Symptoms of diabetic nerve damage include numbness, burning, and aching of the feet and lower extremities. When the nerve disease causes a complete loss of sensation in the feet, patients may not be aware of injuries to the feet, and fail to properly protect them. Shoes or other protection should be worn as much as possible. Seemingly minor skin injuries should be attended to promptly to avoid serious infections. Because of poor blood circulation, diabetic foot injuries may not heal. Sometimes, minor foot injuries can lead to serious infection, ulcers, and even gangrene, necessitating surgical amputation of toes, feet, and other infected parts.
The diabetes market is expected to reach a massively big €86Bn by 2025 combining both type 1 (€32Bn) and type 2 (€54Bn) treatments, and we can expect all sort of revolutionary technologies to come forward and claim their market share. Researchers are already speculating about microchips that can diagnose diabetes type 1 before the symptoms appear or nanorobots traveling in the bloodstream while they measure glucose and deliver insulin.
I am very excited by the closed-loop artificial pancreas trial which is now in its final stages. Professor Roman Hovorka at the University of Cambridge is currently perfecting an algorithm that enables a continuous glucose monitor and an insulin pump to talk to each other, and take over the delivery of insulin throughout the day and night, to keep glucose levels in range.
A positive result, in the absence of unequivocal high blood sugar, should be confirmed by a repeat of any of the above methods on a different day. It is preferable to measure a fasting glucose level because of the ease of measurement and the considerable time commitment of formal glucose tolerance testing, which takes two hours to complete and offers no prognostic advantage over the fasting test.[66] According to the current definition, two fasting glucose measurements above 7.0 mmol/l (126 mg/dl) is considered diagnostic for diabetes mellitus.

Diabetic ketoacidosis can be caused by infections, stress, or trauma, all of which may increase insulin requirements. In addition, missing doses of insulin is also an obvious risk factor for developing diabetic ketoacidosis. Urgent treatment of diabetic ketoacidosis involves the intravenous administration of fluid, electrolytes, and insulin, usually in a hospital intensive care unit. Dehydration can be very severe, and it is not unusual to need to replace 6-7 liters of fluid when a person presents in diabetic ketoacidosis. Antibiotics are given for infections. With treatment, abnormal blood sugar levels, ketone production, acidosis, and dehydration can be reversed rapidly, and patients can recover remarkably well.


Instead of referring patients to outside specialists, internists and general practitioners can continue to helm their patients’ diabetic care through Diabetes Relief with referrals to a nearby center. The patient’s doctor and the team at Diabetes Relief work together to get the patient on the road to recovery—not just to a plateau of keeping symptoms in check. Or, doctors can expand their scope of practice and own an in-house, turnkey Diabetes Healthcare Center. This helps their patients avoid the suffering and expense of dialysis or amputations through the proven therapies of Diabetes Relief.
In addition, as early as in 2008, the Swedish Board of Health and Welfare examined and approved advice on LCHF within the health care system. Advice on LCHF is, according to the Swedish Board of Health and Welfare’s review, in accordance with science and proven knowledge. In other words, certified healthcare professionals, who give such advice (for example myself) can feel completely confident.
With a smaller food supply and a large influx of worthless and acidic mycotoxins, the organs become weak. When the organs become weak the immune system also becomes weak. And that is the missing link to why the immune system is weak. It is microbes and parasites in the organs which are starting the chain reaction of events that cause type 2 diabetes. The immune system may be attacking its own cells because the immune system has been weakened by microbes and parasites in the organs or the damage may be done by microbes and parasites attacking the organs directly.

What are symptoms of type 2 diabetes in children? Type 2 diabetes is becoming increasingly common in children, and this is linked to a rise in obesity. However, the condition can be difficult to detect in children because it develops gradually. Symptoms, treatment, and prevention of type 2 diabetes are similar in children and adults. Learn more here. Read now
×