Exercise is often one of the best treatments for pain. Responding to an entry on pain in the Diabetes Self-Management blog, a Canadian man with Type 2 diabetes reported, “I have cured my back pain completely since starting weight-lifting exercises 18 months ago. I do horizontal and inclined bench presses. I started with 50 lbs and built to 150 lbs. The benches provide complete back support.”
The prognosis of diabetes is related to the extent to which the condition is kept under control to prevent the development of the complications described in the preceding sections. Some of the more serious complications of diabetes such as kidney failure and cardiovascular disease, can be life-threatening. Acute complications such as diabetic ketoacidosis can also be life-threatening. As mentioned above, aggressive control of blood sugar levels can prevent or delay the onset of complications, and many people with diabetes lead long and full lives.
Pulmonary insulin delivery is steadily emerging as a promising solution for the treatment of diabetes mellitus. The large as well as thin absorptive area of the lungs has not been explored until now for the treatment of systemic disease like diabetes. With an understanding of the lung anatomy and physiology and the transport mechanism of insulin through lungs, diabetic treatment through the pulmonary route may well become the reality of the 21(st) century. Though the transport of insulin through the lungs itself appears quite encouraging, potential problems concerning the formulation of a peptide like insulin in the form of an aerosol seem to be the most challenging. Stability aspects, stringent control of Mass Median Aerodynamic Diameter, antigenicity, insulin losses due to the device and impaction, sedimentation and diffusion in the nonabsorptive areas of the airway system (especially in the oropharynx) emerge as major concerns. This is in addition to the problems of lack of reproducibility of dose delivery by an inhaler where individual variations due to inspiratory differences and method of use of device come into play. Lung diseases and smoking may alter lung mechanisms and dose alterations are to be studied in such cases. Though almost equally effective, if not more, than the subcutaneous insulin route, even with proved short-term efficacy, insulin delivery through lungs is a potential but not a wholly proven means for blood glucose control.
Diabetes mellitus (DM), commonly referred to as diabetes, is a group of metabolic disorders in which there are high blood sugar levels over a prolonged period.[10] Symptoms of high blood sugar include frequent urination, increased thirst, and increased hunger.[2] If left untreated, diabetes can cause many complications.[2] Acute complications can include diabetic ketoacidosis, hyperosmolar hyperglycemic state, or death.[3] Serious long-term complications include cardiovascular disease, stroke, chronic kidney disease, foot ulcers, and damage to the eyes.[2]
A 2018 study suggested that three types should be abandoned as too simplistic.[57] It classified diabetes into five subgroups, with what is typically described as type 1 and autoimmune late-onset diabetes categorized as one group, whereas type 2 encompasses four categories. This is hoped to improve diabetes treatment by tailoring it more specifically to the subgroups.[58]

Diabetes: The differences between types 1 and 2 There are fundamental differences between diabetes type 1 and type 2, including when they might occur, their causes, and how they affect someone's life. Find out here what distinguishes the different forms of the disease, the various symptoms, treatment methods, and how blood tests are interpreted. Read now