As a global network of medical research charities, the Juvenile Diabetes Research Foundation (JDRF) is driving research into new treatments that present tremendous opportunities to deliver enhanced health and wellbeing for people with type-1 diabetes. The technology I am currently most enthused about is glucose responsive insulin, which I think is going to transform how people treat and live with type 1 in the future.
Maryland company Orgenesis (ORGS) is developing a proprietary therapeutic platform that transforms adult liver cells into insulin-generating cells to provide patients with independent insulin production. Earlier this year, Orgenesis entered into a partnership with HekaBio K.K. to conduct clinical trials in Japan. The company appears to be moving into licensing the technology to other companies for further development.
This makes Darkes' story seem less plausible, said Dr. Matthias von Herrath, a professor of developmental immunology at La Jolla Institute in California, and an expert in type 1 diabetes. This type of claim is "earth-shattering," he said. "If it's not well corroborated, it's like your grandmother's rumor kitchen" — there's nothing backing the story. If there is a clinical record and the data are clear, the doctors should publish a case report, Von Herrath told Live Science. 
The term was partly inspired by the preamble to the World Health Organization’s 1948 constitution which said: “Health is a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity.”[1] It was initially brought to use in the US by Halbert L. Dunn, M.D. in the 1950s; Dunn was the chief of the National Office of Vital Statistics and discussed “high-level wellness,” which he defined as “an integrated method of functioning, which is oriented toward maximizing the potential of which the individual is capable.”[1] The term "wellness" was then adopted by John Travis who opened a "Wellness Resource Center" in Mill Valley, California in the mid-1970s, which was seen by mainstream culture as part of the hedonistic culture of Northern California at that time and typical of the Me generation.[1] Travis marketed the center as alternative medicine, opposed to what he said was the disease-oriented approach of medicine.[1] The concept was further popularized by Robert Rodale through Prevention magazine, Bill Hetler, a doctor at University of Wisconsin–Stevens Point, who set up an annual academic conference on wellness, and Tom Dickey, who established the Berkeley Wellness Letter in the 1980s.[1] The term had become accepted as standard usage in the 1990s.[1]
Per the WHO, people with fasting glucose levels from 6.1 to 6.9 mmol/l (110 to 125 mg/dl) are considered to have impaired fasting glucose.[67] people with plasma glucose at or above 7.8 mmol/l (140 mg/dl), but not over 11.1 mmol/l (200 mg/dl), two hours after a 75 gram oral glucose load are considered to have impaired glucose tolerance. Of these two prediabetic states, the latter in particular is a major risk factor for progression to full-blown diabetes mellitus, as well as cardiovascular disease.[68] The American Diabetes Association (ADA) since 2003 uses a slightly different range for impaired fasting glucose of 5.6 to 6.9 mmol/l (100 to 125 mg/dl).[69]
Per the WHO, people with fasting glucose levels from 6.1 to 6.9 mmol/l (110 to 125 mg/dl) are considered to have impaired fasting glucose.[67] people with plasma glucose at or above 7.8 mmol/l (140 mg/dl), but not over 11.1 mmol/l (200 mg/dl), two hours after a 75 gram oral glucose load are considered to have impaired glucose tolerance. Of these two prediabetic states, the latter in particular is a major risk factor for progression to full-blown diabetes mellitus, as well as cardiovascular disease.[68] The American Diabetes Association (ADA) since 2003 uses a slightly different range for impaired fasting glucose of 5.6 to 6.9 mmol/l (100 to 125 mg/dl).[69]
Also known as smart insulin, Professor John Fossey at the University of Birmingham is developing this type of insulin delivery system which is designed to circulate in the body, inactive, until blood glucose levels start to rise. As they do, the insulin goes to work to bring these levels back down, ensuring perfect glucose control throughout any given day.
“I am extremely pleased to see that technology developed in Tejal Desai’s group is getting to the point that we can explore this for therapeutic purposes,” Matthias Hebrok, PhD, the director of the Diabetes Center at UCSF and a member of Encellin’s scientific advisory board, noted on the UCSF website. “Encapsulation and protection of islet cells remain a critical hurdle that needs to be overcome before cell therapy becomes a reality in type 1 diabetes.”
People with glucose levels between normal and diabetic have impaired glucose tolerance (IGT) or insulin resistance. People with impaired glucose tolerance do not have diabetes, but are at high risk for progressing to diabetes. Each year, 1% to 5% of people whose test results show impaired glucose tolerance actually eventually develop diabetes. Weight loss and exercise may help people with impaired glucose tolerance return their glucose levels to normal. In addition, some physicians advocate the use of medications, such as metformin (Glucophage), to help prevent/delay the onset of overt diabetes.
Diabetes experts feel that these blood glucose monitoring devices give patients a significant amount of independence to manage their disease process; and they are a great tool for education as well. It is also important to remember that these devices can be used intermittently with fingerstick measurements. For example, a well-controlled patient with diabetes can rely on fingerstick glucose checks a few times a day and do well. If they become ill, if they decide to embark on a new exercise regimen, if they change their diet and so on, they can use the sensor to supplement their fingerstick regimen, providing more information on how they are responding to new lifestyle changes or stressors. This kind of system takes us one step closer to closing the loop, and to the development of an artificial pancreas that senses insulin requirements based on glucose levels and the body's needs and releases insulin accordingly - the ultimate goal.
Without insulin, that extra sugar starts to hang out in your blood with nowhere to go. Just like with honey or sweet syrup, high concentrations of sugar causes the blood to thicken. Physiologically, this pulls fluids and water from other parts of the body into the bloodstream, causing swelling and dryness. Early symptoms of diabetes are relatively mild, including excessive peeing, dry mouth, itchy skin, hunger, fatigue, and blurred vision.
Chronically high blood glucose levels are known to damage nerves, so keeping blood glucose levels close to the normal, nondiabetic range can greatly reduce neuropathic pain. (Sometimes, however, if nerve damage has caused numbness in the feet, legs, hands, or arms, improving blood glucose control can cause pain in these areas as the nerves start to heal and regain function. The pain is usually temporary.)
This book was written in 1999 so I had this uncanny feeling in the back of my head that a lot of water has run over the dam since it was written. The author is a medical doctor with type 2 diabetes who weighed 313 pounds and was a first year medical student before he got the message of needing to do something about his health. He has some suggestions about reversal of diabetes that are interesting and give me pause for thought. His message in its majority is addressed to diabetics who are not ta ...more
Diabetes can also result from other hormonal disturbances, such as excessive growth hormone production (acromegaly) and Cushing's syndrome. In acromegaly, a pituitary gland tumor at the base of the brain causes excessive production of growth hormone, leading to hyperglycemia. In Cushing's syndrome, the adrenal glands produce an excess of cortisol, which promotes blood sugar elevation.
But does Darkes' story really mean type 1 diabetes can be cured? Darkes declined to provide his medical records, and the experts Live Science spoke to said there were several missing or confusing pieces of information in his story. Usually, incredible medical stories like this one are reported as case reports in the medical literature, the experts said. And even if the details of his story can ultimately be confirmed, the experts emphasized that it's extremely unlikely that Darkes' case would lead to a widespread cure for type 1 diabetes, as reports in the media have wrongly suggested.

The term "type 1 diabetes" has replaced several former terms, including childhood-onset diabetes, juvenile diabetes, and insulin-dependent diabetes mellitus (IDDM). Likewise, the term "type 2 diabetes" has replaced several former terms, including adult-onset diabetes, obesity-related diabetes, and noninsulin-dependent diabetes mellitus (NIDDM). Beyond these two types, there is no agreed-upon standard nomenclature.[citation needed]
Glucagon is a hormone that causes the release of glucose from the liver (for example, it promotes gluconeogenesis). Glucagon can be lifesaving and every patient with diabetes who has a history of hypoglycemia (particularly those on insulin) should have a glucagon kit. Families and friends of those with diabetes need to be taught how to administer glucagon, since obviously the patients will not be able to do it themselves in an emergency situation. Another lifesaving device that should be mentioned is very simple; a medic-alert bracelet should be worn by all patients with diabetes.
Don’t let anyone discourage you! Your doctor may be skeptical and resist your efforts to cure yourself, but persevere! Worst case, put your doctor in touch with Dr. Jason Fung, a nephrologist who grew tired of simply controlling pain for his end stage kidney patients at the end of lives ravaged by diabetes, and decided to do something to help them thrive with the energy of a healthy life well-lived. Now follow the simple rules plainly and freely explained above and help yourself!
Per the WHO, people with fasting glucose levels from 6.1 to 6.9 mmol/l (110 to 125 mg/dl) are considered to have impaired fasting glucose.[67] people with plasma glucose at or above 7.8 mmol/l (140 mg/dl), but not over 11.1 mmol/l (200 mg/dl), two hours after a 75 gram oral glucose load are considered to have impaired glucose tolerance. Of these two prediabetic states, the latter in particular is a major risk factor for progression to full-blown diabetes mellitus, as well as cardiovascular disease.[68] The American Diabetes Association (ADA) since 2003 uses a slightly different range for impaired fasting glucose of 5.6 to 6.9 mmol/l (100 to 125 mg/dl).[69]

^ Santaguida PL, Balion C, Hunt D, Morrison K, Gerstein H, Raina P, Booker L, Yazdi H. "Diagnosis, Prognosis, and Treatment of Impaired Glucose Tolerance and Impaired Fasting Glucose". Summary of Evidence Report/Technology Assessment, No. 128. Agency for Healthcare Research and Quality. Archived from the original on 16 September 2008. Retrieved 20 July 2008.
Since cardiovascular disease is a serious complication associated with diabetes, some have recommended blood pressure levels below 130/80 mmHg.[89] However, evidence supports less than or equal to somewhere between 140/90 mmHg to 160/100 mmHg; the only additional benefit found for blood pressure targets beneath this range was an isolated decrease in stroke risk, and this was accompanied by an increased risk of other serious adverse events.[90][91] A 2016 review found potential harm to treating lower than 140 mmHg.[92] Among medications that lower blood pressure, angiotensin converting enzyme inhibitors (ACEIs) improve outcomes in those with DM while the similar medications angiotensin receptor blockers (ARBs) do not.[93] Aspirin is also recommended for people with cardiovascular problems, however routine use of aspirin has not been found to improve outcomes in uncomplicated diabetes.[94]
Surveys of people with diabetes report rates of chronic pain anywhere from 20% to over 60% — much higher than rates in the general population. The types of pain most often reported by people with diabetes include back pain and neuropathy pain in the feet or hands. (Peripheral neuropathy, or nerve damage in the feet and hands, is a common complication of diabetes.) Headaches and other pain sites are also frequently reported. Many people with diabetes also have arthritis, fibromyalgia (an arthritis-related illness that causes widespread muscle and joint pain and fatigue), or other painful conditions.
Diabetes is a disease that occurs when your blood glucose, also called blood sugar, is too high. Blood glucose is your main source of energy and comes from the food you eat. Insulin, a hormone made by the pancreas, helps glucose from food get into your cells to be used for energy. Sometimes your body doesn’t make enough—or any—insulin or doesn’t use insulin well. Glucose then stays in your blood and doesn’t reach your cells.
×